7 Воздействие ультразвука на живые системы

7.1 Ультразвук и биологические системы

Как было показано в предыдущих разделах, при распространении интенсивных ультразвуковых колебаний (интенсивностью более 1…2 Вт/см2) в жидкости наблюдается, обусловленный ультразвуковым давлением эффект, называемый ультразвуковой кавитацией. Кавитационные пузырьки совершают пульсирующие колебания, приводящие к активной локальной турбулизации среды. После кратковременного существования часть пузырьков захлопывается. При этом наблюдаются локальные мгновенные давления, достигающие сотен и тысяч атмосфер. При захлопывании кавитационных пузырьков наблюдаются так-же локальные повышения температуры и электрические разряды. Интенсивность, соответствующая порогу кавитации, зависит от рода жидкости, частоты звука, температуры и других факторов. В воде на частоте 20 кГц она составляет около 0,3…1 Вт/см2.
Выявлено, что в диапазоне частот (5…10)×103 Гц отмечаются такие физико-химические явления, как разделение молекул и ионов с различной массой, искажение формы волны, появление переменного электрического поля, капиллярно-акустического и теплового эффекта, активация диффузии. Здесь проявляются сопутствующие эффекты, влияющие на процессы экстракции из лекарственного, растительного и животного сырья, наблюдается усиление процессов гиперфильтрации, проницаемости клеточных мембран, становятся возможными стерилизация термолабильных веществ, фонофорез, получение концентрированных ингаляционных аэрозолей.
Как известно, механическое действие ультразвука приводит к размельчению и диспергированию частиц. Механически работа ультразвука усиливает диффузию растворителей в биологические ткани.
Физико-химическое действие ультразвука на биологические объекты, прежде всего, связано с морфологией их поверхности. Ультразвук усиливает в тканях проницаемость клеточных мембран и диффузные процессы, изменяет концентрацию водородных ионов в тканях, вызывает расщепление высокомолекулярных соединений, ускоряет обмен веществ. При умеренной и небольшой интенсивности ультразвука в живых тканях явления кавитации практически не выражены и наблюдается лишь пульсация естественных пузырьков в биологических жидкостях и усиление внутриклеточных и внеклеточных микропотоков жидкости, прекращающихся при отключении генератора ультразвука.
Помимо освобождения механической энергии, образование кавитационных полостей сопровождается возникновением электрических зарядов на пограничных поверхностях, вызывающих люминесцентное свечение и ионизацию молекул воды распадающихся на свободные гидроксильные радикалы и атомарный водород (Н2O = НО + Н).
В химическом отношении продукты распада ионизированных молекул воды в тканях организма крайне активны. Именно их большой активностью обусловлен ряд общебиологических эффектов, проявляющихся под влиянием ультразвука [20].
Ультразвук изменяет скорость процессов на границе газ-жидкость. Действие ультразвука повышает растворимость азота в воде на 12%. И в то же время ультразвуковое облучение растворов приводит к их дегазации.
Тепловое действие ультразвука происходит вследствие превращения акустической энергии в тепловую в результате поглощения ультразвука. Кроме того, образование тепла обусловлено физическими явлениями, вызывающими так называемый эффект пограничных поверхностей. Сущность его заключается в усилении действия ультразвука на границе разделения двух сред. Особенно это сказывается на тепловом эффекте, который может усиливаться в несколько раз.
Биологическое действие ультразвука на клетки и ткани определяется главным образом интенсивностью ультразвука и длительностью облучения и может оказывать как положительное, так и отрицательное влияние на жизнедеятельность организмов [19]. Так, возникающие при сравнительно небольших интенсивностях ультразвука (до 1…2 Вт/см2) механические колебания частиц производят своеобразный микромассаж тканей, способствующий лучшему обмену веществ и лучшему снабжению тканей кровью и лимфой. Повышение интенсивности ультразвука может привести к возникновению в биологических средах акустической кавитации, сопровождающейся механическим разрушением клеток и тканей (кавитационными зародышами служат имеющиеся в биологических средах газовые пузырьки). Однако более интенсивные и длительные воздействия могут привести к перегреву биологических структур и их разрушению (денатурация белков и др.).
Первичный эффект действия ультразвука проявляется влиянием на тканевые и внутриклеточные процессы; изменение процессов диффузии и осмоса, проницаемости клеточных мембран, интенсивности протекания ферментативных процессов, окисления, кислотно-щелочного равновесия, электрической активности клетки. В тканях под действием ультразвука активируются обменные процессы, увеличивается содержание нуклеиновых кислот, и стимулируются процессы тканевого дыхания. Под влиянием ультразвука повышается проницаемость стенок сосудов.
В основе биологического действия ультразвука могут лежать также вторичные физико-химические эффекты. Так, при образовании акустических потоков может происходить перемешивание внутриклеточных структур. Кавитация приводит к разрыву молекулярных связей в биополимерах и других жизненно важных соединениях и к развитию окислительно-восстановительных реакций. Ультразвук повышает проницаемость биологических мембран, вследствие чего происходит ускорение процессов обмена веществ из-за диффузии. Все перечисленные факторы в реальных условиях действуют на биологические объекты в том или ином сочетании совместно, и поэтому трудно, а подчас невозможно раздельно исследовать процессы, имеющие различную физическую природу.
В настоящее время, ультразвук – один из методов интенсификации биокатализа. Ультразвуковое облучение ассоциируется с повреждением клеток, но доказаны и благотворные последствия озвучивания на усиление биокатализа и жизнедеятельность живых клеток.
Оксиление холестерола клетками Rhodococcus erythropolis, дегидрогенирование кортизола неподвижными клетоками Arthrobacter было исследовано при ультразвуковом воздействии на частоте 20 кГц. Значительное повышение скорости биотрансформации наблюдалось при облучении клеток в течение 5 секунд каждые 10 минут мощностью 2,2 Вт/см2. Ультразвук повышал массобмен через клеточные мембраны.
Кавитация в суспензиях клеток. При повышении интенсивности ультразвука до значений, когда в среде возникают механические усилия, сравнимые с прочностью клеточных мембран, начинается процесс разрушения клеток. Эффект наблюдается, если амплитуда пульсации пузырьков возрастает до определенной величины. Величина эта различна для разных клеток, зависит от их формы и размера, а также прочности цитоплазмической мембраны и наличия цитоскелета.
Ультразвуковая дезинтеграция клеток получила широкое применение в биотехнологии, в биохимических и вирусологических исследованиях для выделения отдельных веществ и фрагментов клеток, а также в лабораторной диагностике для определения механической резистентности клеточных мембран.
Воздействие ультразвука на белки. Известно, что в ультразвуковом поле происходит изменение структуры, формы и функции молекулы белка. Направление этих изменений зависит от строения белковых и концевых групп белка и свойств газа, содержащегося в водном растворе.
Установлено, что эффект воздействия ультразвука на биомакромолекулы (нуклеопротеиды, нуклеиновые кислоты, липопротеиды и другие) зависит от природы газа, присутствующего в озвучиваемом растворе исследуемых веществ. В присутствии кислорода происходит процесс деградации биомакромолекул, вызывающий угнетение их биокаталитической активности. Данные процессы сопровождаются снижением вязкости растворов этих веществ. В присутствии водорода наблюдается увеличение молекулярной массы биомакромолекул при сохранении их нативных свойств, в частности таких белков, как сывороточный альбумин, трипсин и пепсин.
Воздействие ультразвука на ферменты. Выявлено, что изменения ферментов при ультразвуковом облучении обусловлены не только структурой этих белков, но и природой присутствующего газа. В связи с этим ультразвук не всегда оказывает на них инактивирующее действие. Инактивация ферментов при озвучивании наблюдается в том случае, если этот процесс происходит в присутствии кислорода; в среде, насыщенной водородом, инактивация не происходит. Это установлено при ультразвуковой обработке таких ферментов, как трипсин, пепсин, тирозиназа и других. Некоторые ферменты, например каталаза, вообще не инактивируются ультразвуком. Оксидазы более чувствительны к воздействию ультразвука, в то время как редуктазы, каталазы и амилазы обладают достаточной устойчивостью.
Стерилизующий эффект ультразвука обусловлен разрушающим воздействием ультразвуковых колебаний на микроорганизмы, что позволило использовать ультразвук для стерилизации и дезинфекции. Так, например, стерилизация молока при озвучивании в течение 15…60 секунд задерживает его скисание на 5 суток, при этом витамины в молоке сохраняются. В 1 см3 молока, стерилизованного ультразвуком, содержится в среднем 18 КОЕ, в то время как после обычной пастеризации в течение 1 часа в 1 см3 его остается около 3000 КОЕ.
Механизм стерилизующего действия ультразвука весьма сложен и раскрыт не полностью. Очевидно, кавитация является ведущим фактором. Явление кавитации возникает в первую очередь там, где прочность жидкости наименьшая, т.е. на границе раздела сред клетка-жидкость. При образовании на поверхности клетки кавитационного пузырька в момент его уменьшения происходит как бы втягивание структуры стенки в полость каверны. В последующей фазе при захлопывании каверны возникает мощный гидродинамический удар, достигающий десятков МПа.
Выявлены положительные результаты дезинфекции воды посредством ультразвуковых колебаний; в течение 5 минут удается достигнуть полной стерилизации воды без применения каких-либо химических реагентов. Отмечается также положительный эффект применения ультразвуковых колебаний для стерилизации консервов и соков.
Выяснено, что при действии ультразвука повышается чувствительность микроорганизмов к дезинфицирующим веществам. Стерилизующий эффект при обработке водных взвесей бактерий кишечной палочки (Escherichia coli), которые предварительно подвергались действию ультразвука, был достигнут при значительно меньших концентрациях хлора, формалина и других дезинфицирующих веществ. Это обусловлено изменением («расшатыванием») макромолекулярных структур, входящих в состав оболочки озвучиваемых микроорганизмов, что приводит к нарушению проницаемости оболочек и мембран живых клеток.
Почти все микроскопические растения и организмы погибают, если подвергнуть их действию ультразвука высокой интенсивности. Этот факт в настоящее время рассматривается как альтернативный, безопасный путь к очищению воды и продуктов питания.
Разрушаются ультразвуком кишечная (Escherichia coli), брюшнотифозная (Salmonella typhi), дифтерийная (Corynebacterium diphtheriae), сенная (Bacillus subtilis) палочки, столбняка (Tetanus bacillus), сальмонеллы (Salmonella), кокки (Staphylococcus), трипаносомы (Trypanosoma bacillus), трихомонады (Trichomonas), возбудитель тифа (Typhus recurrens) и др. Ультразвук высокой интенсивности оказывает разрушающее действие на вирусы табачной мозаики (Tobaco mosaic virus), энцефалита (Encephalitis virus), сыпнотифозные, гриппа (Influentia). Бактериофаги больших размеров также чувствительны к действию ультразвука. Из патогенных микроорганизмов наибольшую устойчивость к воздействию ультразвука проявляют различные штаммы туберкулезных палочек (Tuberculum bacillus).
Cтерилизующее действие ультразвука на микроорганизмы проявляется на частотах 20 кГц и выше, при интенсивности более 0,5 Вт/см2 в кавитационном режиме облучения.
Применение ультразвука возможно для стерилизации лекарственных препаратов, приготовленных как в заводских, так и в аптечных условиях. В аптечных условиях, применяя ультразвук частотой до 490 кГц и интенсивностью до 20 Вт/см2 в течение 5 минут, достигали полной стерилизации глазных капель: 0,25%-ного раствора сульфата цинка, 1%-ных растворов дионина, платифиллина гидротартрата, солянокислого пилокарпина. Анализ приготовленных растворов показал сохранение подлинности и количественного содержания лекарственных веществ в растворах до и после ультразвукового воздействия.
Известно, что высокую степень микробной обсемененности имеет лекарственное сырье, в особенности растительное. Поэтому настои, отвары и слизи в аптеках сохраняются не более 2 суток, так как после этого срока может бурно развиться микрофлора. Ультразвук определенных частот и интенсивности вызывает эмульгирование двух несмешивающихся жидкостей и одновременно стерилизацию обращенных эмульсий. Если же возникает необходимость простерилизовать готовые эмульсии ультразвуком, то экспозицию озвучивания по сравнению с озвучиванием суспензии следует уменьшить до 5…10 мин при интенсивности до 5…10 Вт/см2 независимо от частоты ультразвука. Одновременное использование антисептиков и ультразвуковой обработки позволяет снизить концентрацию антисептиков в 10…50 раз в лекарственных формах.
В настоящее время делаются попытки стерилизации большой группы жидких лекарственных форм с помощью ультразвука различных частот и интенсивности в сочетании с некоторыми антимикробными препаратами. Ионы серебра, меди, цинка, находящиеся в растворе в концентрациях, не поддающихся количественному определению («следы»), в комбинации с ультразвуком (интенсивностью 0,3…0,5 Вт/см2 временем облучения 15…30 мин) проявляют олигодинамическое воздействие на всю микрофлору, которая находится в лекарственной форме. Активность ионов металлов в отношении, например, грибов снижается в ряду Ag+, Hg2+, Cu2+, Cd2+, Cr2+, Ni2+, Pb2+, Co2+, Zn2+, Fe2+, Ca2+. Соли тяжелых металлов в большой концентрации коагулируют белки, в малых – являются блокаторами меркаптогрупп.
При ультразвуковой обработке водных суспензий микобактерий частотой 20 кГц, происходит разрушение 93% микобактерий, а при высокочастотном ультразвуковом воздействии (612 кГц) – 35,5%.
Ультразвуковой капиллярный эффект – явление увеличения глубины и скорости проникновения жидкости в капиллярные каналы под действием ультразвука (по сравнению с глубиной и скоростью, обусловленных только капиллярными силами). Открытие ультразвукового капиллярного эффекта принадлежит белорусскому ученому академику Е.Г. Коновалову (1961) [46,47]. В его эксперименте использовались стеклянные трубки с диаметром 2 мм, имевшие входной рупор. При нормальном падении волн на отверстие рупора в трубке наблюдался дополнительный подъем уровня жидкости (сверх высоты капиллярного уровня), пропорциональный силе звука. В серии работ Е.Г. Коновалова обнаружено, что дополнительный подъем под действием ультразвука линейно растет при повышении температуры и увеличении диаметра. Максимальная высота и скорость подъема наблюдались при контакте капилляров с поверхностью излучателя. Исследования позволили полагать, что ультразвуковой капиллярный эффект обусловлен ударами кумулятивных струй или в упрощенном варианте давлением, возникающим при захлопывании кавитационных пузырьков около устья капилляра. Подобно ультразвуковому капиллярному эффекту известно явление «обратного» ультразвукового капиллярного эффекта, нашедшего широкое применение, в том числе и в медицине (Педдер В.В, 2009) [49].
Влияние ультразвука на развитие черенков. В Ботаническом саду Одесского университета изучали влияние ультразвуковых колебаний на возможность ускорения корнеобразования и увеличения выхода укорененных черенков роз (Rosa L.) [48]. Черенки нарезали из средней части однолетних полуодревесневших побегов. Связанные в пучки черенки помещали в ванну, дном которой служила излучающая пластинка, после чего ванну заполняли водой. Опытные черенки озвучивали в течение 15, 30, 45 секунд, 1, 3, 5, 12 и 20 минут при интенсивности 1 Вт/см2 и частоте колебаний 22 кГц, контрольные – выдерживали в водной среде. Для укоренения использовали смесь листовой земли, чернозема и речного песка в соотношении 2:2:1. Результаты опыта показали, что у всех сортов обработка в течение трех минут увеличивает укореняемость и ускоряет корнеобразование. Срок укоренения черенков в опыте составил 15 дней, в контроле 28 дней. Под действием ультразвука интенсивность трансприрации у опытных растений по сравнению с контролем увеличивалась на 20…25%. Применение ультразвука позволяет проводить черенкование без специальных туманообразующих установок 2…3 раза в год.

7.2 Предпосевная обработка семян

Для обеспечения высокого урожая необходим высококачественный посадочный материал, с высоким процентом всхожести. Для этого семена перед посадкой подвергают предварительной обработке (замачивание, протравливание и т.д.). Предпосевная обработка семян позволяет интенсифицировать процесс прорастания, уничтожает вредные микроорганизмы.
Используемые методы предпосевной обработки семян обладают рядом недостатков: длительность процесса замачивания, невозможность отделить всхожие семена от невсхожих до их прорастания. В связи с этим, большой интерес представляет совершенствование и дальнейшее развитие существующих методов предпосевной обработки семян.
В 30 – 40 – е годы прошлого века в Советском союзе проводились исследования влияния ультразвуковых колебаний на процесс развития растений [47]. Исследования показали, что использование ультразвуковых колебаний благотворно сказывается на процесс прорастания семян и последующее развитие растений.
Так обработанные ультразвуком зерна ячменя дают всходы на 2-3 дня раньше, чем контрольные посадки, длина колоса и количество зерен в нем увеличиваются на 30%.
Процесс ультразвуковой обработки семян выглядит следующим образом [48]:
Партия семян помещается в технологический объем с водой, при этом объем семян не должен превышать 30% объема воды.
Вносятся необходимые микроэлементы.
В течение 5-10 минут производится обработка ультразвуком.
Таким образом, ультразвуковая предпосевная обработка семян характеризуется высокой производительностью.
Кроме этого, ультразвуковая предпосевная обработка семян имеет еще одно неоспоримое преимущество, которое повышает ее ценность. После предпосевной обработки семян пустые, невсхожие семена остаются плавать на поверхности жидкости, а всхожие семена оседают на дно. Таким образом, можно достаточно легко отделить невсхожие семена от всхожих.
К сожалению, механизм ультразвукового воздействия на зерна и семена до конца не исследован. Ясно только, что ультразвук способен стимулировать жизненные силы, заложенные природой в каждую сельскохозяйственную культуру [49].
Для проведения исследований был разработана установка на базе ультразвукового технологического аппарата «Волна – 0,4/22–М» (Рисунок 7.1).
Установка для предпосевной обработки семян
Рисунок 7.1 – Установка для предпосевной обработки семян
В ходе исследований ультразвуковой обработке подвергались семена дыни, томатов, кукурузы, пшеницы, гречихи. Результаты исследований приведены в таблице 7.1.

Таблица 7.1 – Результаты экспериментов по предпосевной обработке семян

Вид растений Рост урожайности, %
Дыня 45
Томаты 15
Кукурузя 35
Пшеница 25
Гречиха 30

7.3 Применение ультразвука в медицине

7.3.1. Физиотерапевтическое воздействие ультразвука

Применение ультразвука существенно обогатило арсенал физиотерапевтических методов. Использование ультразвука позволило не только успешно бороться с некоторыми болезнями, но и повышать жизнеспособность и сопротивляемость здорового организма неблагоприятным внешним условиям [27].
Применение ультразвука, как, впрочем, и других лечебных воздействий, требует дозировки. При слишком низких интенсивностях и коротком времени воздействия ультразвук может оказаться неэффективным, а интенсивное и длительное воздействие может обусловить весьма существенные и не обязательно желательные изменения в организме.
При некоторых вяло протекающих инфекционных и других заболеваниях весьма полезной оказывается проводимая, с лечебной целью аутогемотерапия - внутримышечное или внутривенное введение больному (человеку или животному) его собственной крови. Такая процедура приводит, как правило, к улучшению обменных процессов и повышению защитных сил организма.
Эффективность аутогемотерапии можно повысить, если перед вливанием кровь облучить ультрафиолетом, осторожно взболтать или подвергнуть действию ультразвука низких интенсивностей. При этом отмечается значительное улучшение общего состояния организма, повышение его жизнеспособности и сопротивляемости неблагоприятным изменениям внешней среды.
Рефлексотерапия – лечебное воздействие иглами, теплотой, надавливанием на определенные биологически активные точки, расположенные на поверхности тела, - имеет многовековую историю. В последнее время к традиционным методам воздействия добавились и современные - воздействие электрическим током, лазерным лучом, ультразвуком.
Совокупность биологически активных точек функционально представляет собой как бы вынесенный на поверхность тела пульт индикаторов и датчиков, сигналы с которых корректируют работу внутренних органов. Функции таких индикаторов, очевидно, выполняют многочисленные рецепторы и нервные окончания, расположенные на участках рыхлой соединительной ткани в области локализации биологически активных точек.
Как известно, реакция рецепторов па внешнее воздействие всегда сопровождается деполяризацией, снижением мембранного потенциала и изменением проницаемости их мембран, по крайней мере, по отношению к ионам натрия и калия. Известно также, что изменение проницаемости клеточных мембран - универсальная реакция клеток па ультразвуковое воздействие. Таким образом, очевидно, что действие ультразвука на биологически активные точки обусловлено деполяризацией мембран рецепторов содержащихся в этих точках.
Например, увеличивается половая потенция баранов и хряков после воздействия непрерывным ультразвуком с интенсивностью 0,05…0,2 Вт/см2 в течение 1...3 мин на точку «38 БАЙ ХУЭ», расположенную на средней линии спины, на уровне верхнего края крестцовой кости, и на три пары точек «38 МУ-Я», расположенных в 50 мм от средней линии, на уровне второго, третьего и четвертого крестцовых позвонков.
Воздействие ультразвуком на общеукрепляющие точки обусловливает изменение не только в воспроизводительной функции животных. Сразу же после воздействия па эти точки у человека и животных па 7...10 % увеличивается частота пульса и на 10-12 % - частота дыхания, но через несколько часов оба показателя возвращаются к норме.
Ультразвуковая физиотерапия весьма эффективна при лечении острых синовитов, тендовагинитов, периоститов, фиброзных и осцифицирущих периоститов.
Воздействие одним лишь ультразвуком на очаг заболевания (местное воздействие) при острых и хронических асептических процессах, касающихся суставов, сухожилий, связок и других звеньев конечностей, способствует быстрому восстановлению их опорно-двигательной функции. Обычно выздоровление наступает после 6-7 процедур, по одной ежедневно или через день. При хронических пролиферативных процессах курс лечения увеличивается до 11-12 процедур. Если клинические проявления заболевания не проходят, то курс лечения необходимо повторить через 1-2 месяца.
Благодаря ярко выраженному обезболивающему действию, ультразвук особенно эффективен при лечении неосложненных вывихов голеностопного и плечевого суставов. При острых синовитах, тендовагинитах и других заболеваниях весьма эффективен фонофорез гидрокортизона или дексазона, обеспечивающий одновременное действие ультразвука и лекарственного препарата.
Фонофорез - введению лекарственного препарата сквозь неповрежденную кожу благодаря силам, действующим в акустическом поле, способствует также обусловленное ультразвуком повышение проницаемости клеточных мембран, причем толщина слоя ткани, состоящей из клеток, мембраны которых обладают повышенной проницаемостью, пропорциональна интенсивности ультразвука. Повышенная проницаемость сохраняется в течение полутора-двух часов, однако наибольшая проницаемость наблюдается в течение первых 25 мин после воздействия ультразвуком. Поэтому в ряде случаев после ультразвукового воздействия весьма эффективен электрофорез. При такой последовательности электрофоретически введенные лекарственные вещества локализуются не только в межклеточном пространстве, но и попадают во внутренний объем клетки.
В физиотерапии опорно-двигательного аппарата лучше всего действует, не вызывая отрицательных последствий и быстро приводя к выздоровлению, ультразвук с интенсивностями в интервале 0,1...0,4 Вт/см2. Под влиянием низких интенсивностей ультразвука, стимулирующих обменные процессы, снижается экссудация, разрыхляется фиброзная ткань, начинается декальцификация сформировавшихся и формирующихся остеофитов и экзостозов. Увеличение интенсивности и длительности воздействия приводит к разрежению кортикального слоя кости в зоне воздействия ультразвука и другим нежелательным последствиям.
Способность ультразвука ускорять процессы синтеза соединительнотканных и других белков, а также РНК в клетках, его стимулирующее, противовоспалительное и болеутоляющее действие делают ультразвуковую терапию ран весьма эффективной.
Под действием ультразвука (0,88 МГц; 0,5 Вт/см2; 3...5 мин.) раны размером 3...5 см в поперечнике заживают на 18-20-й день после их появления. Таким образом, раны заживают на 8-10 дней быстрее, чем раны, кожу вокруг которых ежедневно обеззараживают 70%-ным раствором винного спирта, а поверхность раны смазывают 50%-ным водным раствором глицерина, и на 4-5 дней быстрее, чем раны, края и поверхность которых ежедневно покрывают синтомициновой эмульсией.
Следует отметить, что результат комбинированного действия ультразвука с синтомициновой эмульсией не превышает результатов, обеспечиваемых применением одного лишь ультразвука. Очевидно, ультразвуковое воздействие настолько полно реализует резервы организма, что влияние других факторов на этом фоне оказывается незначительным.
Заживление послеоперационных ран можно ускорить, используя ультразвук для предварительной подготовки тканей. Дооперационное воздействие ультразвуком, стимулируя защитные процессы, ускоряет после-операционную регенерацию тканей, заживление операционного разреза, существенно упрочняет формирующийся рубец. Так, на четвертые сутки после операции, проведенной па коже, предварительно обработанной ультразвуком, прочность рубца оказывается более чем на 30 % выше, чем прочность рубца на неподготовленном участке.
Весьма целесообразно использовать ультразвук и для лечения воспалительных инфильтратов, нередко возникающих в качестве послеоперационных осложнений. После воздействия ультразвуком с интенсивностью 0,2...0,6 Вт/см2 воспалительные явления обычно стихают после 4-5 процедур, а после 6-9 процедур инфильтраты чаще всего рассасываются. При ежедневном лечении ультразвуком площадь раны уменьшается в 1,5-2 раза быстрее, патогенные микробы исчезают из раны на 2-3 дня раньше обычного, а рубец формируется без келоидизации. В целом ультразвуковое облучение ускоряет заживление осложненных операционных ран на 2-3 дня.
Фурункулез - острое гнойнонекротическое воспаление волосяных мешочков, связанных с ними сальных желез и окружающей их клетчатки, вызывается стафилококком и возникает в местах патогенного заражения, а также механического или химического раздражения кожи. У животных фурункулы нередко образуются на вымени, ежедневные десятиминутные воздействия ультразвуком (0,88 МГц; 0,2...1 Вт/см2) непосредственно на поверхность фурункулов через водно-глицериновую контактную среду значительно ускоряют лечение. Уже после первой процедуры уменьшается болезненность пораженного участка, после второй или третьей снижается воспаление, боли полностью исчезают, фурункулы уменьшаются в размерах. На пятый-шестой день большинство фурункулов вскрывается, из них выделяются гнойный экссудат и гнойные пробки. Образовавшиеся па месте фурункулов язвочки в последующие 5-6 дней полностью заживают. В некоторых случаях фурункулы не вскрываются: после 10-12 процедур инфильтраты рассасываются и на их месте под кожей обнаруживаются лишь безболезненные уплотнения.
Следует отметить, что использование в качестве контактной среды вместо водно-глицериновой смеси тетрациклиновой мази лишь незначительно ускоряет процесс лечения. Очевидно, в обоих случаях эффект обусловлен терапевтическим действием ультразвука, а не действием веществ, содержащихся в среде, обеспечивающей акустический контакт между фурункулом и излучателем ультразвуковых волн.
При абсцессах ультразвуковая терапия также дает хорошие результаты. Используются те же методы воздействия и параметры ультразвука, что и при лечении фурункулеза. Применение ультразвука особенно эффективно при лечении абсцессов, расположенных неглубоко под поверхностью тела.

7.3.2 Влияние ультразвука на молочную железу и лечение ее заболеваний

Молочные железы являются придатками кожи, специализированными для секреции молока. Попытки повышения их продуктивности с помощью стимуляции самыми разными факторами, в том числе и ультразвуком, весьма многочисленны. Особенно эффективен ультразвук (0,88 МГц; 0,2..0,6 Вт/см2; 5...10 мин) при раздаивании. Стимулируя обменные процессы, нормализуя сократительную активность гладкой и поперечно-полосатой мускулатуры, ультразвуковое воздействие улучшает кровоснабжение молочной железы, повышает молокоотдачу, уменьшает явления застоя и задержки молока, сокращает сроки раздаивания.
Стимуляция секреции молока ультразвуком у активно лактирующих животных не всегда приводит к повышению их продуктивности. Эффект зависит от исходной продуктивности и резерва возможностей организма лактирущего животного, а также от интенсивности ультразвука, локализации и длительности его воздействия. Эффективной реализации резерва продуктивности способствует воздействие ультразвуком низких интенсивностей (0,2...0,4 Вт/см2) па рефлексогенные зоны вымени животных, расположенные у основания соска. Общее воздействие на вымя также приводит к увеличению секреции на 10…12% при условии, что интенсивность ультразвука не превышает 1 Вт/см2. При более высоких интенсивностях ультразвукового воздействия на вымя продуктивность животных или подавляется, или, если компенсаторным механизмам удастся справиться с повреждающим воздействием интенсивного ультразвука, продуктивность остается па исходном уровне.
Воздействие ультразвуком на молочные железы приводит к изменению качества молока. В молоке увеличивается содержание лизоцима, цепного фермента, придающего молоку бактерицидные свойства. Чем выше концентрация лизоцима в молоке, тем ниже вероятность инфицирования молочной железы, возникновения маститов и других заболеваний. В связи с этим ультразвук низких интенсивностей может рассматриваться как хорошее средство предупреждения маститов.
Увеличение интенсивности ультразвука до 1,5...2,0 Вт/см2, как правило, несколько снижает молочную продуктивность, хотя содержание лизоцима в молоке возрастает, и тем значительнее, чем ниже было его содержание в молоке животных до ультразвукового воздействия.
Воспаления молочной железы, вызванные гноеродными микроорганизмами (маститы), часто встречаются у людей и животных. При маститах весьма эффективны ультразвуковые методы, существенно ускоряющие и удешевляющие процесс лечения.
Первое же воздействие ультразвуком (0,88 мГц; 0,4...0,6 Вт/см2; 10 мин.) на пораженную долю вымени снимает болевую реакцию. При своевременном лечении катаральные маститы прекращаются после 2-5 процедур (по одной ежедневно). В конце курса лечения болезнетворные микроорганизмы в молоке совсем исчезают.
Успешно используют ультразвук и при других формах маститов, а также при абсцессах, актиломикозах, флегмонах и отеках различной этиологии. Процесс лечения обычно составляет 5-6 дней и не превышает 2-3 недель.
Эффективен для лечения маститов комбинированный метод, включающий лечение ультразвуком и антимикробными препаратами.

7.3.3 Ультразвук в офтальмологии

Ультразвук с интенсивностью, превышающей 1 Вт/см2, вызывает нежелательные явления в структуре глаза - помутнение стекловидного тела, образование катаракты, слущиваиие эпителия па роговице, отек и некроз передних слоев стромы и пр. Поэтому для лечения болезней глаз используют ультразвук с интенсивностью 0,2...0,4 Вт/см2, а время воздействия обычно не превышает 5 мин. Ультразвук в таком режиме заметно активизирует обменные процессы, а также увеличивает проницаемость тканей глаза для лекарственных препаратов. В связи с этим на практике, как правило, используют фонофорез [27].
В лечении глазных болезней была использована и способность ультразвука стимулировать обменные процессы, ускорять биосинтез соединительнотканных белков и ряда других веществ в клетке, активизировать восстановительные процессы в поврежденных тканях.
Весьма эффективен ультразвук (0,88 мГц; 0,3 Вт/см2; 5 мин.) при лечении тяжелых проникающих ран роговицы и склеры. Под его влиянием ускоряется рассасывание фибрина и лейкоцитарной инфильтрации, уменьшается отек стромы роговицы. В результате образуется тонкий, почти бессосудистый рубец, похожий по своему строению на строму роговицы.
Вирусный кератит, в том числе у кроликов, собак, лошадей и других животных, после лечения ультразвуком быстро проходит и не оставляет грубых рубцов на роговице.
Для воздействия ультразвуком на глаза животных и человека в настоящее время используется несколько разных способов. Излучатели небольшого размера (диаметром от 0,5 до 1 см) позволяют облучать ультразвуком ограниченный участок глаза при непосредственном контакте с ним. Такой метод чаще всего используют при лечении рубцов, царапин и ран кожных покровов век и кожи вокруг глаз. Для воздействия на сам глаз применяют непрямой контактный метод. В качестве прокладки, передающей акустическую энергию, используют заполненный водой мешочек из тонкой резины, принимающий форму глаза и излучателя. Однако при этом теряется 50...60 % ультразвуковой знергии и становится затруднительной точная дозировка воздействия.
Фонофорез проводят, используя специальную ванночку-векорасширитель, которую устанавливают па предварительно анестезированное глазное яблоко. Края ванночки заводят под веки, а в широкую часть наливают лекарственный раствор, который одновременно используется в качестве среды, обеспечивающей акустический контакт. При стойких хронических патологических изменениях различных структур глаза ультразвуковая терапия малоэффективна.

7.3.4 Влияние ультразвука на внутренние органы

Ультразвук в ряде случаев весьма эффективен при лечении болезней внутренних органов.
При ранних воспалительных поражениях печени ультразвук (0,88 мГц; 0,3…0,6 Вт/см2; 5...10 мин) оказывает нормализующее и противовоспалительное действие. В зрелом возрасте, особенно при гипокинезии и гепатозе, это действие проявляется значительно слабее.
Ультразвуковое воздействие (0,2…0,4 Вт/см2) на область желчного пузыря усиливает его моторную активность. При хронических холециститах после лечения ультразвуком уменьшаются боли, исчезают диспепсические явления, значительно уменьшаются или даже полностью восстанавливаются размеры печени.
Ультразвуковое воздействие (0,5..0,85 Вт/см2) на область желудка или соответствующую паравертебральную зону нормализует его моторную, эвакуаторную и секреторную функции. При гастрите, в частности у собак, ультразвук нормализует всасывательную функцию в среднем на 32 дня, а секреторную - на 37 дней раньше, чем в контроле. Эффективен ультразвук (0,2…0,6 Вт/см2) и при язвенной болезни.
Под влиянием низкочастотного ультразвука (44...65 кГц) иммунная система испытывает существенные изменения. Воздействие на область селезенки ультразвуковым инструментом с амплитудой 0,3...3 мкм в течение минуты, повышая устойчивость иммунной системы к инфекциям, обеспечивает выживание, по крайней мере, 20% животных в эксперименте после их заражения высоковирулентным щтаммом коклюшных бактерий.
Интенсивность иммуногенеза в ответ на введение в организм антигена возрастает, если предварительно - за 24…48 ч - подвергнуть животное ультразвуковому воздействию. Интенсификация иммуногенеза, очевидно, обусловлена общей реакцией организма на внешнее неспецифическое воздействие и отчетливо проявляется в повышении содержания гемолизинов и гемагглютицинов в крови, а также повышении количества антител и розеткообразующих клеток в селезенке.

7.3.5 Ультразвуковое лечение опухолей

Ультразвук низких интенсивиостей (0,4...2,5 Вт/см2) редко применяется в онкологии. С одной стороны, он стимулирует иммунную систему, что в ряде случаев приводит к рассасыванию опухолей, в том числе и тех, которые не подвергались непосредственному воздействию ультразвуком, а с другой - интенсифицирует обменные процессы, ускоряя разрастание опухолевых тканей. Такая двойственность обусловливает определенную степень непредсказуемости, что и препятствует применению ультразвука низкой интенсивности в онкологии.
Ультразвук высоких интенсивностей (1000 Bт/см2) способен полностью разрушить опухолевую ткань. При этом, ввиду фокусирования, область, где интенсивность ультразвука превышает порог разрушения, может быть весьма ограничена, что позволяет воздействовать на опухоль или ее фрагменты, не нарушая целостности окружающих здоровых тканей [27]. Однако после разрушения новообразования весьма велика вероятность гибели организма от интоксикации продуктами распада опухоли, а разрушать ее по частям нельзя, так как оставшиеся фрагменты начинают бурно разрастаться, увеличивается и вероятность метастазирования.
Эффективность ультразвуковых методов в онкологии можно существенно повысить, комбинируя ультразвук с другими видами воздействия.
Значительно усиливает ультразвук низких интенсивностей действие противоопухолевых препаратов на клетки. Однако при введении в организм внутривенно, внутримышечно или перорально концентрация противоопухолевых препаратов в опухолях нередко оказывается ниже, чем в здоровых тканях.
Снижать количество вводимого в организм лекарства тоже нельзя, так как в низких концентрациях многие противоопухолевые препараты стимулируют злокачественный рост. Эти препараты вовсе не безвредны для организма и так же, как и в опухолях, подавляют или останавливают рост клеток в здоровых тканях.
При поверхностном расположении опухоли ультразвук может быть использован для фонофоретического введения противоопухолевых препаратов непосредственно в пораженную ткань. При этом он не только способствует накоплению препарата в опухоли, но и облегчает его проникновение внутрь клеток, поскольку увеличивает проницаемость клеточных мембран. Кроме того, благодаря синергизму ультразвука и противоопухолевых препаратов существенно интенсифицируется их действие.
Метод чрезкожного фонофореза противоопухолевых препаратов, очевидно, непригоден для лечения новообразований, лежащих в глубине тканей. В этом случае для доставки препарата к опухоли можно использовать липосомы (см. подразд. 3.3.4). Доставленные током крови к прогретой ультразвуком опухоли липосомы именно здесь высвободят противоопухолевый препарат, который благодаря повышенной в результате ультразвукового воздействия проницаемости клеточных мембран будет депонироваться, в основном, в опухолевой ткани.
Аналогичный процесс, но значительно менее выраженный, наблюдается и при введении лекарственных препаратов непосредственно в кровь.
Сочетание ионизирующих излучений с ультразвуком низких интенсивностей, а также ультразвуком, обеспечивающим гипертермию опухолей, значительно повышает терапевтическую эффективность радиотерапии. Синергизм этих воздействий позволяет при тех же результатах в несколько раз снизить дозу лучевого воздействия и таким образом избежать сосудистых, воспалительных и других осложнений, наблюдающихся при традиционных способах радиотерапии.

7.3.6 Применение ультразвука в хирургии

Поиск и разработка методов снижения травматичности, кровопотери и болевые ощущений при хирургических операциях, методом, позволяющих ускорить заживление, послеоперационных ран и рассасывание рубцов, а также методом, облегчающих труд хирурга-оператора, важные задачи современной хирургии, решению которых способствует применение ультразвука.
Можно выделить две основные области использование ультразвука в оперативной хирургии. Это инструментальная ультразвуковая хирургия и локальные разрушения в глубине тканей с помощью фокусированного ультразвука.
За последние годы в практику стали широко внедряться физические методы хирургического воздействия с применением электрокоагуляционной, лазерной, криогенной и ультразвуковой техники.
Рабочая часть ультразвукового хирургического ножа имеет традиционную форму лезвия скальпеля, соединенного волноводом с магнитострикционным или пьезокерамическим преобразователем. Рабочая часть может иметь и другую форму в соответствии с требованиями выполняемой операции. Амплитуда колебаний режущей кромки в зависимости от поставленной задачи может быть изменена от 1 до 350 мкм, а частота выбирается в диапазоне от 20 до 100 кГц. Как известно, трение покоя больнее, чем трение скольжения, поэтому трение между двумя поверхностями уменьшается, если одна из них совершает колебательные движения. Именно поэтому работа с ультразвуковыми инструментами требует от хирурга меньших усилий.
Характер разрушения тканей под действием ультразвукового хирургического инструмента зависит от строения его рабочей части, амплитуды и направления колебании. Зависит он и от вязкоупругих свойств и однородности ткани.
При рассечении мягких тканей ультразвуковым ножом, лезвие которого совершает продольные ультразвуковые колебания, взаимодействует с тканью лишь кромка лезвия, обеспечивая процесс микрорезания, существенно усиливающего режущие свойства инструмента. Кроме того, у кромки лезвия колеблющегося инструмента выделяется теплота, локально повышающая температуру ткани и обусловливаю­щая гемостатический эффект в результате термокоагуляции крови.
Так, применение ультразвукового скальпеля, амплитуда колебании кромки которого лежит в интервале 15…20 мкм при частоте 44 кГц, в 6-8 раз уменьшает кровотечение из мелких и средних сосудов, в 4-6 раз снижает усилие резания, а также существенно облегчает строго послойное разделение кожи, подкожной жировой клетчатки и рубцовоизмененного хряща. Очевидно, что если на инструмент нало­жены лишь продольные колебания, то его воздействие на стенки раневого канала минимально.
Для разрушения некоторых патологических образовании используют специальные волноводы - дезинтеграторы, рабочий конец которых помимо продольных совершает и поперечные колебания. Такие инструменты оказывают существенное влияние па окружающие ткани и по мере введения инструмента разрушают их.
Ультразвуковые инструменты обладают явными преимуществами перед электро или криохирургическими, так как не прилипают к ткани и поверхности раневого канала и не вызывают дополнительных травм. Ультразвуковой скальпель не уступает в ряде случаев и лазерному хирургическому инструменту, так как, ощущая сопротивление ткани при операции, хирург лучше контролирует процесс ее рассечения.
В зависимости от поставленной задачи ультразвуковые инструменты могут иметь самые разные размеры и форму.
Применительно к операциям, проводимым на брюшной полости пациента эффективность достигается благодаря применению методов лапароскопической (от греч. lapára - пах, чрево и skopéö - смотрю) хирургии. Для лапароскопических операций используются лапароскоп и специальные инструменты, которые вводятся по троакарам через отдельные миниатюрные проколы (не более 1 см) в брюшной полости. Небольшие проколы, производимые при лапароскопических хирургических вмешательствах, практически не травмируют мышечную ткань.
Одной из основных и наиболее важной частью ультразвукового комплекса для лапароскопии является ультразвуковая колебательная система (УЗКС), преобразующая электрические колебания ультразвуковой частоты в механические. От того, насколько эффективно она осуществляет свою функцию, зависят такие эксплуатационные параметры аппарата как: максимальная амплитуда ультразвуковых колебаний, допустимое время непрерывной работы, разогрев колебательной системы и рабочих инструментов.
Колебательная система, как правило, строится по полуволновой конструктивной схеме, сочетающей в себя электроакустический преобразователь (пьезоэлектрический) и концентратор.
Для осуществления ультразвукового резания и коагуляции необходимым и достаточным условием является достижение амплитуды колебаний порядка 150 мкм. К сожалению, при таком значении амплитуды колебаний велика вероятность возникновения изгибных колебаний. При этом наблюдается разрушение рабочего инструмента.
Для выполнения различного рода лапароскопических операций применяется несколько сменных рабочих инструментов (до 10 шт.), которые отличаются длиной, диаметром и формой окончаний. Длина всех сменных рабочих инструментов выбиралась из условий обеспечения кратности половине длины волны продольных ультразвуковых колебаний в материале инструмента (Рисунок 7.2).
Рисунок 7.2 – Внешний вид рабочих инструментов – волноводов с различными рабочими окончаниями


Рисунок 7.2 – Внешний вид рабочих инструментов – волноводов с различными рабочими окончаниями

Короткие рабочие инструменты длиной 185±4 мм, предназначены для отрытой хирургии, рабочие инструменты длиной 365±5 мм, применяются при лапароскопии. Рабочая частота равна 29±1,5 кГц, что удовлетворяет условию согласования преобразователя и рабочего инструмента.
Волноводы выполнены таким образом, что имеют два основных диаметра 6мм и 3мм. Тонкие инструменты наиболее предпочтительны, так как уменьшается размер необходимого прокола в брюшной полости пациента.
На рисунке 7.3 показан внешний вид волновода диаметром 3 мм с режущим рабочим окончанием с установленным одним демпфирующим кольцом.
Рисунок 7.3 – Волновод-ножницы с демпфирующим кольцом


Рисунок 7.3 – Волновод-ножницы с демпфирующим кольцом

Этот тип волновода обеспечивает амплитуду 150 мкм и более даже без демпфирующих колец. После установки демпфирующего кольца и защитного тубуса характеристики волновода не изменились. Однако наблюдается сильный разогрев установленного кольца на волноводе, и при длительной работе кольцо начинает дымить. Резонансная частота волновода с установленными демпфирующими кольцами и присоединенным преобразователем 29,76 кГц.
Аналогичное поведение отмечено и у волновода-ножниц длиной 369 мм. Наличие демпфирующих колец на этом типе волновода позволило поднять его амплитуду до 150 мкм. Наблюдался сильный нагрев в зоне третьей, от рабочего окончания, проточки.
Резонансная частота волновода с установленными демпфирующими кольцами и присоединенным преобразователем была равна 29,57 кГц. Следует отметить, что при использовании ультразвукового хирургического инструмента наряду с гемостатическим эффектом наблюдаются также анальгетический и бактерицидный и/или бактериостатические эффекты.
Бактерицидный эффект позволяет использовать простую и оригинальную методику самостерилизации хирургического инструмента. Рабочую часть инструмента опускают в раствор дезинфектанта и включают генератор. Ультразвуковые колебания вызывают интенсивные микротечения жидкости вблизи инструмента, очищающие его поверхность. Кроме того, увеличивая проницаемость мембран клеток болезнетворных бактерий по отношению к дезинфицирующему веществу, ультразвук повышает эффективность его действия, что позволяет в 10-100 раз снизить концентрацию этого вещества в растворе. Если, например, лезвие ультразвукового скальпеля погрузить в бульон со стандартной культурой гемолитического плазмокоагулирующего стафилококка, после этого включенный инструмент подвергнуть двухминутной самостерилизации в разбавленном (0,025…0,5%) растворе диоцида, выключить его и привести в соприкосновение с поверхностью кровяного агара, то число выросших микробных колоний окажется тем меньшим, чем выше была амплитуда колебаний инструмента
На практике для стерилизации ультразвуковой инструмент, колеблющийся с максимальной амплитудой, опускают па несколько секунд в сосуд с любым дезинфицирующим раствором, например перкиси водорода.

7.3.7. Ультразвуковая липосакция

Уже более 40 лет для липосакции используют устройства, обеспечивающие удаление подкожных жировых отложений через проколы в коже (внутренняя липосакция). Такие устройства постоянно совершенствуются и кульминацией их развития стало применение для удаления подкожно-жировой клетчатки устройств, использующих ультразвуковые колебания высокой интенсивности [7,8].
Применение ультразвуковых колебаний для удаления подкожно-жировой клетчатки позволило интенсифицировать процесс и сделать липосакцию безопасной операцией в сравнении с применявшимися ранее устройствами для механического разрушения и вакуумного отсоса жира.
Для создания и введения УЗ колебаний высокой интенсивности в области человеческого тела, где необходимо удалить излишки подкожно-жировой клетчатки, применяются специальные устройства, основу которых составляют ультразвуковые колебательные системы [7,8], содержащие закрепленный в корпусе пьезоэлектрический преобразователь и сменный ультразвуковой хирургический инструмент, соединенный и акустически связанный с преобразователем (Рисунок 7.4). Пьезоэлектрический преобразователь обеспечивает преобразование электрических колебаний в ультразвуковые.
Сменный ультразвуковой хирургический инструмент вводится в тело пациента на необходимую глубину и обеспечивает передачу ультразвуковых колебаний от пьезоэлектрического преобразователя в подкожно – жировую клетчатку.
Рисунок  7.4 - Ультразвуковая колебательная система для внутренней липосакции


Рисунок 7.4 - Ультразвуковая колебательная система для внутренней липосакции.

Сменный ультразвуковой хирургический инструмент вводится в тело пациента на необходимую глубину и обеспечивает передачу ультразвуковых колебаний от пьезоэлектрического преобразователя в подкожно – жировую клетчатку. Сменный ультразвуковой хирургический инструмент выполняется в виде полого стержня переменного сечения, на конце которого имеется рабочее окончание (Рисунок 7.5).
Рисунок  7.5 -  рабочие инструменты ультразвуковой колебательной системы для внутренней липосакции


Рисунок 7.5 - рабочие инструменты ультразвуковой колебательной системы для внутренней липосакции.

Центральный сквозной канал в колебательной системе обеспечивает откачивание получаемой жировой эмульсии при помощи вакуумного насоса в процессе проведения операции.
Среди современных устройств для ультразвуковой липосакции наибольшее распространение получили устройства фирмы "МЕNTOR" .
Анализ конструктивных особенностей и функциональных возможностей известных устройств позволяет утверждать, что основными их недостатками являются необходимость выполнения проколов в коже, механическое разрушение внутренней структуры подкожно – жировой клетчатки за счет механических перемещений рабочих инструментов длиной до 400 мм и диаметром до 7 мм, термические ожоги, невозможность контроля зоны кавитационного разрушения и отсоса. Недостатки приводят к операционной травматичности и необходимости длительной реабилитации после проведения процедуры, что существенно ограничивает возможности внутренней ультразвуковой липосакции.
Для устранения недостатков устройств, предназначенных для внутренней липосакции, в последние годы начали применяться устройства для внешней (наружной) липосакции, обеспечивающие введение ультразвуковых колебаний в подкожно – жировую клетчатку через поверхность кожи пациента. Благодаря введению ультразвуковых колебаний через поверхность кожи в жировой ткани возникает эффект кавитации (образуются взрывающиеся кавитационные пузырьки). Кавитационные пузырьки разжижают жир и вытесняют его из клеток. Перемещаясь из области с низким давлением в область с высокого давления, кавитационный пузырек увеличивается в размерах и схлопывается - происходит своего рода «микро-взрыв», который разрушает мембраны жировых клеток. В конечном счете освободившийся жир выводится из организма через лимфатическую и кровеносную системы.
Внешняя ультразвуковая липосакция совершенно безвредна для всех систем организма просто потому, что в других клетках, кроме жировых, эффекта кавитации не возникает. При этом осложнения после ультразвуковой липосакции не возникают, она не травматична, не требует реабилитационного периода, а противопоказаний против внешней ультразвуковой липосакции практически нет.
Уникальность метода внешней липосакции при помощи эффекта кавитации заключается в том, что при небольшом воздействии ультразвука исключительно на жировую клетчатку происходит разжижение жировой клетки и полное её опустошение без повреждения соединительной и костной ткани, капилляров и прочих органов. Для появления эффекта кавитации необходимы определенные условия, а именно давление 0,6 кПа и вибрация с частотой от 39-41 кГц, благодаря этому удается достичь более глубокого проникновения до 8-10 см.
На сегодняшний день существует несколько устройств (медицинских аппаратов), реализующих процедуру внешней липосакции при помощи ультразвуковых низкочастотных колебаний (итальянской фирмы TriWorks – «Synetica», американской фирмы Ultrashape Inc – «UltraShape Contour I», итальянской фирмы Manola Tesoro - «ULTRA», американской фирмы RAH-MediCell и др.). Наиболее известным и эффективным (по отзывам врачей и пользователей) из таких устройств является аппарат американской фирмы Ultrashape Inc (Yoqneam Illite, Иллинойс) – «UltraShape Contour I»[51].
Устройство для внешней ультразвуковой липосакции состоит из двух основных узлов: электронного генератора ультразвуковой частоты и пьезоэлектрической колебательной системы (рисунок 7.6).
Электронный генератор ультразвуковой частоты обеспечивает преобразование электрической энергии промышленной частоты (50 Гц) в электрическую энергию ультразвуковой частоты (40 кГц), соответствующей собственной резонансной частоте колебательной системы.
Пьезоэлектрическая ультразвуковая колебательная система обеспечивает преобразование электрических колебаний, поступающих от электронного генератора, в механические колебания ультразвуковой частоты заданной интенсивности (амплитуды) и их введение через поверхность кожи в подкожно – жировую клетчатку.
Рисунок 7.6 – Аппарат для внешней ультразвуковой липосакции


Рисунок 7.6 – Аппарат для внешней ультразвуковой липосакции

Колебательная система устройства ультразвуковой внешней липосакции содержит закрепленный в корпусе пьезоэлектрический преобразователь, выполненный в виде последовательно размещенных на соединительном стержне и акустически связанных между собой цилиндрической тыльной частотнопонижающей резонансной накладки, кольцевых пьезоэлектрических элементов и цилиндрической частотнопонижающей излучающей накладки.
Для преобразования электрических колебаний, поступающих от электронного генератора, в механические колебания ультразвуковой частоты применяются две пары кольцевых пьезоэлектрических элементов, диаметр которых соответствует диаметрам симметрично расположенных относительно них тыльной частотнопонижающей и рабочей излучающей накладок. Колебательная система может иметь максимальный размер в поперечном сечении равный 60 мм, что, с точки зрения эргономических требований (удобство работы оператора), считается наиболее приемлемым.
Суммарная длина пьезоэлектрического преобразователя колебательной системы соответствует половине длины волны на рабочей частоте 40 кГц и это позволяет формировать резонансные продольные колебания на рабочей частоте и обеспечивать их введение в тело человека через излучающую поверхность рабочей накладки.
Технические характеристики известного устройства для внешней ультразвуковой липосакции:
  1. Максимальная выходная мощность – 30 Вт;
  2. Рабочая частота – 40 кГц;
  3. Излучающая поверхность диаметром – 50…60 мм;

При проведении внешней липосакции эффект получается равномерным, отсутствуют гематомы мягких тканей и нет необходимости ношения компрессионного белья. А особая физиология жировой ткани позволяет гарантировать, что на месте удаленных избытков жира проблема не возникнет повторно. Результат виден после первой процедуры. Например, в области талии женщины теряют от 4 до 7 см в течении 12 дней. В области галифе сбросить 5 см тоже не составляет никакого труда. У кого то эффект более заметен, у кого-то чуть меньше, но результат есть у всех и это без операции, без боли. Женщина не испытывает вообще никакого дискомфорта и значительно экономит свое драгоценное время.

7.3.8 Ультразвуковые ингаляционные аппараты

Ингаляционные аппараты предназначены для индивидуального применения лицами, страдающими отоларингологическими заболеваниями, с целью лечения и профилактики заболеваний верхних дыхательных путей и легких, аэрозолями жидких лекарственных веществ (минеральных вод, водных растворов солей, отваров лекарственных трав и т.д.). Так же их применение может быть эффективно для ароматизации и/или очистки помещений от вредных для здоровья веществ и микроорганизмов путем распыления дозированных, порций жидкостей по заданной программе.
В связи с этим существует потребность в ультразвуковых ингаляторах, характеризующихся высокой надежностью, малыми габаритами, весом и стоимостью, высокой производительностью, полным использованием лекарственных препаратов и пригодных для профилактики и лечения дыхательных органов мелкодисперсными аэрозолями, как в лечебных учреждениях, так и в домашних условиях.
Рассмотрим несколько конструкций УЗ ингаляторов (ингалятор для лечебных учреждений «Муссон» (Рисунок 7.7) и ингалятор индивидуального применения «ИНАЛ» (Рисунок 7.8) и модификацию ингалятора «ИНАЛ-М» для групповой аэрозоль терапии), отличающихся простотой в изготовлении и настройке, малой стоимостью, отсутствием дефицитных комплектующих, высокой надежностью и эффективностью [52].
Отличительной особенностью разработанных ингаляторов является наличие системы автоматического отслеживания уровня распыляемой жидкости относительно области фокусирования ультразвука, что обеспечивает, с одной стороны, ее полное расходование, а с другой высокую стабильность дисперсного состава аэрозоля и его плотности.
Рисунок 7.7 – Ультразвуковой ингалятор «Муссон»


Рисунок 7.7 – Ультразвуковой ингалятор «Муссон»

Второй отличительной особенностью всех разработанных конструкций ингаляторов является применение узла магнитогидродинамической активации аэрозоля.
Выбор оптимальных параметров УЗ ингаляторов позволил обеспечить формирование аэрозоля с размерами частиц до 2 мкм (90 % от общего количества), оптимальную производительность (не менее 4 мл/мин для ингалятора «ИНАЛ» и не менее 1 мл/мин для ингалятора «ИНАЛ-М»), полное распыление используемых препаратов, оптимальный уровень подогрева аэрозоля и его магнитную активацию.
Рисунок 7.8 – Ультразвуковой ингалятор «Инал»


Рисунок 7.8 – Ультразвуковой ингалятор «Инал»

Для получения сфокусированного ультразвукового поля в ингаляторе «ИНАЛ» используется пьезоэлектрический элемент в форме диска, соединенный с алюминиевой вогнутой линзой. Применение линзы обеспечивает не только фокусировку ультразвуковых колебаний, но и защиту серебренных электродов пьезоэлемента от воздействий используемых лекарственных препаратов.
Внешний вид ингаляторов показан на рисунках 7.7 и 7.8 (на фото показаны два варианта выполнения распылительной камеры).
Ингалятор состоит из электронного блока и подключаемой к его выходному разъему с помощью соединительного кабеля распылительной камеры.
Электронный блок содержит источник питания и высокочастотный генератор, вырабатывающий электрические колебания частотой 2.64 МГц для возбуждения ультразвуковых колебаний в распылительной камере.
Распылительная камера, показано два варианта использования распылительной камеры с трубкой для вдыхания аэрозоля пациентом и с раструбом для насыщения аэрозолем помещения-ингалятория) служит для образования аэрозоля из лекарственных препаратов, его магнитной активации и транспортировки к пациенту (пациентам).
Электрические колебания, подаваемые по соединительному кабелю в распылительную камеру от электронного блока преобразуются пьезоэлектрическим элементом в ультразвуковые. Ультразвуковые колебания, проходя через фокусирующую линзу, контактную жидкость и дно кюветы, фокусируются на поверхности лекарственного препарата, обеспечивая его распыление
При транспортировке аэрозоля к пациенту через трубку лекарственный препарат подвергается магнитной обработке в ультразвуковом поле.
Кювета для лекарственного препарата состоит из двух колец (наружного и внутреннего), между которыми расположена тонкая фторопластовая или лавсановая пленка. Такая кювета позволяет использовать для распыления до 30 мл лекарственного препарата.
Применение в качестве дна кюветы тонкой полимерной пленки обеспечивает наилучшие условия прохождения ультразвуковых колебаний (отсутствие ослабления) и исключает плавление (прогар) дна после выработки всего жидкого лекарственного препарата.
Особым достоинством, отмечаемым потребителями, была возможность распыления маслосодержащих лекарственных препаратов.
Опыт применения показал, что такой ингалятор наиболее пригоден для лечебных учреждений, Использование его в домашних условиях для индивидуального лечения не всегда оправдано, из-за достаточно высокой стоимости и необходимости соблюдения определенных технологических приемов (применения в качестве контактной жидкости диэрированной дистиллированной воды с температурой 35-40 градусов, точная дозировка контактной жидкости).
По этим причинам, для индивидуального потребителя, потребовалось создать более простой в обращении и менее дорогой ингалятор.
Одновременная обработка потока магнитным и УЗ полями создает эффект больший, чем сумма эффектов от каждого вида воздействий порознь. Создаваемый в результате этого фактора запас по эффективности омагничивания был трансформирован при разработке ингаляторов в снижение требований к силе магнитов и числу ступеней реверсирования вектора магнитной индукции, что, в свою очередь, позволяет уменьшить габариты и стоимостные показатели аппарата.
В части совершенствования существующих ингаляторов необходим малогабаритный, переносной (карманный), малоэнергоемкий (с батарейным питанием) ультразвуковой аэрозольный аппарат постоянной готовности.
Такой ультразвуковой аэрозольный аппарат состоит из генератора электрических колебаний, питающего пьезоэлектрический преобразователь, соединенный акустически с промежуточной средой. В качестве промежуточной среды используется элемент в виде тела вращения с конусным, экспоненциальным или ступенчатым изменением диаметра вдоль длины (концентратор). При этом большая торцевая поверхность концентратора образована плоскими гранями, выполненными симметрично относительно его продольной оси на равных расстояниях от центра меньшей торцевой поверхности. Преобразователь, выполнен в виде пьезоэлектрических пластин, соединенных с каждой из граней. В центре меньшей из торцевых поверхностей концентратора размещена полость, сообщающаяся, с одной стороны, с этой поверхностью посредством капиллярного отверстия для выхода аэрозоля, а с другой стороны с резервуаром для подачи распыляемой жидкости.
Наиболее эффективным вариантом реализации аэрозольного аппарата является одновременное питание преобразователя электрическими колебаниями двух частот. Одна из питающих частот соответствует половине длины волны в материале пьезоэлектрических пластин, а вторая соответствует половине длины волны ультразвуковых колебаний в материале элемента в виде тела вращения. При этом меньшая из торцевых поверхностей концентратора имеет поверхность произвольной геометрической формы, например виде чаши.
Существенного расширения функциональных возможностей аэрозольного аппарата можно добиться соединением полости, выполненной в центре меньшей из торцевых поверхностей, посредством капилляров, проходящих через концентратор и выходящих на большую торцевую поверхность концентратор, с резервуарами для подачи различных по свойствам распыляемых жидкостей.
На рисунке 7.9 для иллюстрации конструкции и пояснения принципа работы представлен эскиз аэрозольного аппарата.
Ультразвуковой аэрозольный аппарат состоит из генератора электрических колебаний 1, пьезоэлектрических пластин 2, размещенных на гранях большей торцевой поверхности элемента в виде тела вращения 3. Грани большей торцевой поверхности расположены симметрично относительно продольной акустической оси элемента 3, на равных расстояниях от центра меньшей торцевой (распылительной) поверхности 4. В центре распылительной поверхности 4 элемента 3 размещена (выполнена) полость 5, образующая распылительную камеру, имеющая капиллярное отверстие 8 для выведения образованного аэрозоля потребителю. По капилляру 6 полость 5 сообщается с резервуаром для распыляемой жидкости 7.
Распылительная поверхность 4 может иметь поверхность произвольной геометрической формы, например, в виде чаши (рисунок 7.10, а), имеющей произвольный наклон относительно продольной акустической оси элемента 3 (рисунок 7.10 б).
Рисунок 7.9 – Эскиз аэрозольного аппарата


Рисунок 7.9 – Эскиз аэрозольного аппарата

Рисунок 7.10 – Возможная форма распылительной поверхности
а) чашеобразная распылительная поверхность б) наклонная распылительная поверхность


Рисунок 7.10 – Возможная форма распылительной поверхности

Полость 5, выполненная в центре распылительной поверхности 4, может соединяться с резервуарами 7 для подачи различных по свойствам распыляемых жидкостей, посредством нескольких капилляров 6, проходящих через концентратор и выходящих на большую из торцевых концентратора (рисунок 7.11).
Рисунок 7.11 – Аэрозольный аппарат с возможностью одновременного распыления трех различных жидкостей


Рисунок 7.11 – Аэрозольный аппарат с возможностью одновременного распыления трех различных жидкостей

В целом конструкция предлагаемого распылителя представляет собой двухчастотную ультразвуковую колебательную систему с ярко выраженными резонансами килогерцового (низкочастотного) и мегагерцового (высокочастотного) диапазонов (резонансы пьезоэлектрических пластин, например, 2,5 МГц и всей конструкции, например, 120 кГц). Система может возбуждаться одновременно на двух резонансах или на каждом в отдельности.
При возбуждении на частоте килогерцового диапазона (120 кГц), распылитель представляет собой пьезоэлектрическую колебательную систему с концентратором ультразвуковых колебаний, роль которого выполняет элемент 3. В этом случае генератор 1 создает электрические колебания ультразвуковой частоты, равной продольной резонансной частоте элемента 3. Мощности ультразвуковых колебаний, генерируемые пьезоэлектрическими пластинами 2 складываются на распылительной поверхности 4 и распыление жидкости происходит со всей поверхности 4. Форма и направление формируемого факела распыления определяются формой распылительной поверхности 4.
На рисунке 7.12 показан факел распыления, формирующийся поверхность распыления в форме чаши, с углом наклона 300. Подача жидкости на распылительную поверхность 4 происходит посредством капилляра 6 за счет разряжения возникающего на поверхности 4. Средний диаметр капель аэрозоля формируемого на этой частоте равен 18-20 мкм.
Рисунок 7.12 – Формируемый факел аэрозоля


Рисунок 7.12 – Формируемый факел аэрозоля

На частоте мегагерцового диапазона генератор 1 создает электрические колебания высокой частоты, равной резонансной частоте (например, 2,5 МГц) пьезоэлектрических пластин 2, преобразуемые за счет пьезоэффекта пьезоэлектрическими пластинами 2 в ультразвуковые колебания, собираемые в полости 5 в центре распылительной поверхности 4 концентратора 3. Ультразвуковые колебания, возникающие в полости 5, вызывают разряжение внутри этой полости, обеспечивающие подачу распыляемой жидкости по капилляру 6 в полость 5. При этом сечение капилляра 6 выбирается таким образом, чтобы силы поверхностного натяжения удерживали находящуюся в нем жидкость, исключая ее самопроизвольное вытекание при любом положении аэрозольного аппарата. При выполнении нескольких капилляров 6, одновременная подача различных распыляемых жидкостей осуществляется аналогичным образом и под действием ультразвуковых колебаний в полости 5 происходит их смешивание. После заполнения полости 5, ультразвуковые колебания, приходящие в эту полость, окончательно фокусируются в распыляемой жидкости, вызывая ее мелкодисперсное (3..5 мкм) распыление через капиллярное отверстие 8.
Наиболее эффективным является режим работы, при котором генератор 1 создает электрические колебания высокой частоты мегагерцового диапазона (2.5 МГц), модулированные колебаниями килогерцового диапазона (120 кГц) (рисунок 7.13). В этом случае происходит одновременное высокочастотное распыление жидкости из полости 5 и низкочастотное распыление с поверхности 4.
Рисунок 7.13 – Форма напряжения питающего распылитель


Рисунок 7.13 – Форма напряжения питающего распылитель

Получаемый в таком режиме распыления аэрозоль имеет распределение капель различного размера в общем объеме аэрозоля, показанное на рисунке 7.14.
На гистограмме, показанной на рисунке 7.14 (ось Х – диаметр капли, ось Y – процентное содержание капель указанного диаметра в общем объеме составе аэрозоля) отчетливо видны два максимума, соответствующие диаметрам капель (3-5мкм и 18-20мкм), образующихся при возбуждении распылителя на частотах его основных резонансов (2,5 МГц – резонанс пьезоэлектрических пластин 2, и 120 кГц – резонанс элемента в виде тела вращения 3). Промежуток между основными диаметрами капель (3-5мкм и 18-20мкм) также достаточно «плотно» заполнен каплями промежуточного диаметра. Изменяя взаимное расположение основных резонансов распылителя можно регулировать плотность заполнение этого промежутка.
Рисунок 7.14 – Распределение капель формируемого аэрозоля<


Рисунок 7.14 – Распределение капель формируемого аэрозоля

Таким образом, в предлагаемой конструкции происходит двойное фокусирование ультразвуковых колебаний:
  1. в металлическом концентраторе;
  2. в малом объеме жидкости, находящейся в полости 5 (в активной зоне распылителя).
Это позволяет говорить об эффективности применения предлагаемого аэрозольного аппарата для генерации аэрозоля с заданными дисперсными характеристиками. Об энергетической эффективности предлагаемой конструкции распылителя можно судить по степени фокусировки ультразвуковой энергии в материале концентратора 3 (рисунок 7.15). Интенсивность звуковой энергии в полости 5 в центре торцевой поверхности 4 (в распылительной камере) не менее чем в 30 раз превосходит интенсивность звуковой энергии на поверхности пьезоэлектрических пластин 2, при этом, в процессе распыления воды с производительностью распыления 1 мл /мин расходуется не более 3 Вт электрической энергии. Все это позволяет говорить о высокой энергетической эффективности преобразователя.
Рисунок 7.15 – Фокусирование УЗК в концентраторе


Рисунок 7.15 – Фокусирование УЗК в концентраторе

Такая конструкция ультразвукового аэрозольного аппарата позволяет создать портативные ультразвуковые аэрозольные аппараты, в которых отсутствует возможность вытекания распыляемой жидкости. Применение такого аэрозольного аппарата максимально просто – аналогично применению ингалятора для астматиков. Нажал кнопку – происходит генерация аэрозоля. Однако в отличие от существующих портативных ингаляторов, использующих гидродинамический способ распыления, в предложенном устройстве формируется мягкий равномерный аэрозоль, легко проникающий в альвеолы легких.